On the Global Convergence of the PERRY-SHANNO Method for Nonconvex Unconstrained Optimization Problems

نویسندگان

  • Linghua Huang
  • Qingjun Wu
  • Gonglin Yuan
چکیده

In this paper, we prove the global convergence of the Perry-Shanno’s memoryless quasi-Newton (PSMQN) method with a new inexact line search when applied to nonconvex unconstrained minimization problems. Preliminary numerical results show that the PSMQN with the particularly line search conditions are very promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient improvement of the Newton method for solving nonconvex optimization problems

‎Newton method is one of the most famous numerical methods among the line search‎ ‎methods to minimize functions. ‎It is well known that the search direction and step length play important roles ‎in this class of methods to solve optimization problems. ‎In this investigation‎, ‎a new modification of the Newton method to solve ‎unconstrained optimization problems is presented‎. ‎The significant ...

متن کامل

On the Global Convergence of the BFGS Method for Nonconvex Unconstrained Optimization Problems

This paper is concerned with the open problem whether BFGS method with inexact line search converges globally when applied to nonconvex unconstrained optimization problems. We propose a cautious BFGS update and prove that the method with either Wolfe-type or Armijo-type line search converges globally if the function to be minimized has Lipschitz continuous gradients.

متن کامل

The Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems

The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...

متن کامل

The Global Convergence of Self-scale BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems

The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011